Copied to
clipboard

G = D7×C8.C22order 448 = 26·7

Direct product of D7 and C8.C22

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D7×C8.C22, Q163D14, SD165D14, C56.4C23, C28.23C24, M4(2)⋊11D14, Dic283C22, D28.16C23, Dic14.16C23, (D7×Q16)⋊1C2, (C2×Q8)⋊22D14, (D7×SD16)⋊3C2, (C4×D7).44D4, C4.191(D4×D7), C7⋊C8.11C23, Q8⋊D75C22, C8.4(C22×D7), Q16⋊D71C2, C4○D4.29D14, D14.68(C2×D4), C8.D143C2, SD16⋊D73C2, C28.244(C2×D4), C56⋊C25C22, C8⋊D75C22, (D7×M4(2))⋊3C2, D4.D76C22, (Q8×D7)⋊11C22, (C7×Q16)⋊1C22, (C8×D7).1C22, (D4×D7).7C22, C7⋊Q164C22, C4.23(C23×D7), C22.48(D4×D7), C28.C239C2, Dic7.61(C2×D4), (C2×Dic7).82D4, (Q8×C14)⋊20C22, (C7×SD16)⋊5C22, (C4×D7).15C23, (C7×D4).16C23, D4.16(C22×D7), D4.9D1410C2, (C7×Q8).16C23, Q8.16(C22×D7), (C2×C28).114C23, C4○D28.30C22, (C22×D7).102D4, D42D7.6C22, C14.124(C22×D4), (C7×M4(2))⋊5C22, C4.Dic714C22, Q82D7.6C22, (C2×Dic14)⋊41C22, (C2×Q8×D7)⋊17C2, C2.97(C2×D4×D7), C74(C2×C8.C22), (D7×C4○D4).4C2, (C2×C14).69(C2×D4), (C7×C8.C22)⋊1C2, (C2×C4×D7).162C22, (C2×C4).98(C22×D7), (C7×C4○D4).25C22, SmallGroup(448,1229)

Series: Derived Chief Lower central Upper central

C1C28 — D7×C8.C22
C1C7C14C28C4×D7C2×C4×D7C2×Q8×D7 — D7×C8.C22
C7C14C28 — D7×C8.C22
C1C2C2×C4C8.C22

Generators and relations for D7×C8.C22
 G = < a,b,c,d,e | a7=b2=c8=d2=e2=1, bab=a-1, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, dcd=c3, ece=c5, ede=c4d >

Subgroups: 1228 in 258 conjugacy classes, 101 normal (51 characteristic)
C1, C2, C2, C4, C4, C22, C22, C7, C8, C8, C2×C4, C2×C4, D4, D4, Q8, Q8, Q8, C23, D7, D7, C14, C14, C2×C8, M4(2), M4(2), SD16, SD16, Q16, Q16, C22×C4, C2×D4, C2×Q8, C2×Q8, C4○D4, C4○D4, Dic7, Dic7, C28, C28, D14, D14, C2×C14, C2×C14, C2×M4(2), C2×SD16, C2×Q16, C8.C22, C8.C22, C22×Q8, C2×C4○D4, C7⋊C8, C56, Dic14, Dic14, Dic14, C4×D7, C4×D7, D28, D28, C2×Dic7, C2×Dic7, C7⋊D4, C2×C28, C2×C28, C7×D4, C7×D4, C7×Q8, C7×Q8, C7×Q8, C22×D7, C22×D7, C2×C8.C22, C8×D7, C8⋊D7, C56⋊C2, Dic28, C4.Dic7, D4.D7, Q8⋊D7, C7⋊Q16, C7×M4(2), C7×SD16, C7×Q16, C2×Dic14, C2×Dic14, C2×C4×D7, C2×C4×D7, C4○D28, C4○D28, D4×D7, D4×D7, D42D7, D42D7, Q8×D7, Q8×D7, Q8×D7, Q82D7, Q8×C14, C7×C4○D4, D7×M4(2), C8.D14, D7×SD16, SD16⋊D7, D7×Q16, Q16⋊D7, C28.C23, D4.9D14, C7×C8.C22, C2×Q8×D7, D7×C4○D4, D7×C8.C22
Quotients: C1, C2, C22, D4, C23, D7, C2×D4, C24, D14, C8.C22, C22×D4, C22×D7, C2×C8.C22, D4×D7, C23×D7, C2×D4×D7, D7×C8.C22

Smallest permutation representation of D7×C8.C22
On 112 points
Generators in S112
(1 105 88 16 19 61 43)(2 106 81 9 20 62 44)(3 107 82 10 21 63 45)(4 108 83 11 22 64 46)(5 109 84 12 23 57 47)(6 110 85 13 24 58 48)(7 111 86 14 17 59 41)(8 112 87 15 18 60 42)(25 78 54 34 66 98 95)(26 79 55 35 67 99 96)(27 80 56 36 68 100 89)(28 73 49 37 69 101 90)(29 74 50 38 70 102 91)(30 75 51 39 71 103 92)(31 76 52 40 72 104 93)(32 77 53 33 65 97 94)
(1 43)(2 44)(3 45)(4 46)(5 47)(6 48)(7 41)(8 42)(17 86)(18 87)(19 88)(20 81)(21 82)(22 83)(23 84)(24 85)(25 95)(26 96)(27 89)(28 90)(29 91)(30 92)(31 93)(32 94)(49 69)(50 70)(51 71)(52 72)(53 65)(54 66)(55 67)(56 68)(57 109)(58 110)(59 111)(60 112)(61 105)(62 106)(63 107)(64 108)(73 101)(74 102)(75 103)(76 104)(77 97)(78 98)(79 99)(80 100)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)
(1 25)(2 28)(3 31)(4 26)(5 29)(6 32)(7 27)(8 30)(9 37)(10 40)(11 35)(12 38)(13 33)(14 36)(15 39)(16 34)(17 68)(18 71)(19 66)(20 69)(21 72)(22 67)(23 70)(24 65)(41 89)(42 92)(43 95)(44 90)(45 93)(46 96)(47 91)(48 94)(49 81)(50 84)(51 87)(52 82)(53 85)(54 88)(55 83)(56 86)(57 102)(58 97)(59 100)(60 103)(61 98)(62 101)(63 104)(64 99)(73 106)(74 109)(75 112)(76 107)(77 110)(78 105)(79 108)(80 111)
(2 6)(4 8)(9 13)(11 15)(18 22)(20 24)(25 29)(27 31)(34 38)(36 40)(42 46)(44 48)(50 54)(52 56)(58 62)(60 64)(66 70)(68 72)(74 78)(76 80)(81 85)(83 87)(89 93)(91 95)(98 102)(100 104)(106 110)(108 112)

G:=sub<Sym(112)| (1,105,88,16,19,61,43)(2,106,81,9,20,62,44)(3,107,82,10,21,63,45)(4,108,83,11,22,64,46)(5,109,84,12,23,57,47)(6,110,85,13,24,58,48)(7,111,86,14,17,59,41)(8,112,87,15,18,60,42)(25,78,54,34,66,98,95)(26,79,55,35,67,99,96)(27,80,56,36,68,100,89)(28,73,49,37,69,101,90)(29,74,50,38,70,102,91)(30,75,51,39,71,103,92)(31,76,52,40,72,104,93)(32,77,53,33,65,97,94), (1,43)(2,44)(3,45)(4,46)(5,47)(6,48)(7,41)(8,42)(17,86)(18,87)(19,88)(20,81)(21,82)(22,83)(23,84)(24,85)(25,95)(26,96)(27,89)(28,90)(29,91)(30,92)(31,93)(32,94)(49,69)(50,70)(51,71)(52,72)(53,65)(54,66)(55,67)(56,68)(57,109)(58,110)(59,111)(60,112)(61,105)(62,106)(63,107)(64,108)(73,101)(74,102)(75,103)(76,104)(77,97)(78,98)(79,99)(80,100), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112), (1,25)(2,28)(3,31)(4,26)(5,29)(6,32)(7,27)(8,30)(9,37)(10,40)(11,35)(12,38)(13,33)(14,36)(15,39)(16,34)(17,68)(18,71)(19,66)(20,69)(21,72)(22,67)(23,70)(24,65)(41,89)(42,92)(43,95)(44,90)(45,93)(46,96)(47,91)(48,94)(49,81)(50,84)(51,87)(52,82)(53,85)(54,88)(55,83)(56,86)(57,102)(58,97)(59,100)(60,103)(61,98)(62,101)(63,104)(64,99)(73,106)(74,109)(75,112)(76,107)(77,110)(78,105)(79,108)(80,111), (2,6)(4,8)(9,13)(11,15)(18,22)(20,24)(25,29)(27,31)(34,38)(36,40)(42,46)(44,48)(50,54)(52,56)(58,62)(60,64)(66,70)(68,72)(74,78)(76,80)(81,85)(83,87)(89,93)(91,95)(98,102)(100,104)(106,110)(108,112)>;

G:=Group( (1,105,88,16,19,61,43)(2,106,81,9,20,62,44)(3,107,82,10,21,63,45)(4,108,83,11,22,64,46)(5,109,84,12,23,57,47)(6,110,85,13,24,58,48)(7,111,86,14,17,59,41)(8,112,87,15,18,60,42)(25,78,54,34,66,98,95)(26,79,55,35,67,99,96)(27,80,56,36,68,100,89)(28,73,49,37,69,101,90)(29,74,50,38,70,102,91)(30,75,51,39,71,103,92)(31,76,52,40,72,104,93)(32,77,53,33,65,97,94), (1,43)(2,44)(3,45)(4,46)(5,47)(6,48)(7,41)(8,42)(17,86)(18,87)(19,88)(20,81)(21,82)(22,83)(23,84)(24,85)(25,95)(26,96)(27,89)(28,90)(29,91)(30,92)(31,93)(32,94)(49,69)(50,70)(51,71)(52,72)(53,65)(54,66)(55,67)(56,68)(57,109)(58,110)(59,111)(60,112)(61,105)(62,106)(63,107)(64,108)(73,101)(74,102)(75,103)(76,104)(77,97)(78,98)(79,99)(80,100), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112), (1,25)(2,28)(3,31)(4,26)(5,29)(6,32)(7,27)(8,30)(9,37)(10,40)(11,35)(12,38)(13,33)(14,36)(15,39)(16,34)(17,68)(18,71)(19,66)(20,69)(21,72)(22,67)(23,70)(24,65)(41,89)(42,92)(43,95)(44,90)(45,93)(46,96)(47,91)(48,94)(49,81)(50,84)(51,87)(52,82)(53,85)(54,88)(55,83)(56,86)(57,102)(58,97)(59,100)(60,103)(61,98)(62,101)(63,104)(64,99)(73,106)(74,109)(75,112)(76,107)(77,110)(78,105)(79,108)(80,111), (2,6)(4,8)(9,13)(11,15)(18,22)(20,24)(25,29)(27,31)(34,38)(36,40)(42,46)(44,48)(50,54)(52,56)(58,62)(60,64)(66,70)(68,72)(74,78)(76,80)(81,85)(83,87)(89,93)(91,95)(98,102)(100,104)(106,110)(108,112) );

G=PermutationGroup([[(1,105,88,16,19,61,43),(2,106,81,9,20,62,44),(3,107,82,10,21,63,45),(4,108,83,11,22,64,46),(5,109,84,12,23,57,47),(6,110,85,13,24,58,48),(7,111,86,14,17,59,41),(8,112,87,15,18,60,42),(25,78,54,34,66,98,95),(26,79,55,35,67,99,96),(27,80,56,36,68,100,89),(28,73,49,37,69,101,90),(29,74,50,38,70,102,91),(30,75,51,39,71,103,92),(31,76,52,40,72,104,93),(32,77,53,33,65,97,94)], [(1,43),(2,44),(3,45),(4,46),(5,47),(6,48),(7,41),(8,42),(17,86),(18,87),(19,88),(20,81),(21,82),(22,83),(23,84),(24,85),(25,95),(26,96),(27,89),(28,90),(29,91),(30,92),(31,93),(32,94),(49,69),(50,70),(51,71),(52,72),(53,65),(54,66),(55,67),(56,68),(57,109),(58,110),(59,111),(60,112),(61,105),(62,106),(63,107),(64,108),(73,101),(74,102),(75,103),(76,104),(77,97),(78,98),(79,99),(80,100)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112)], [(1,25),(2,28),(3,31),(4,26),(5,29),(6,32),(7,27),(8,30),(9,37),(10,40),(11,35),(12,38),(13,33),(14,36),(15,39),(16,34),(17,68),(18,71),(19,66),(20,69),(21,72),(22,67),(23,70),(24,65),(41,89),(42,92),(43,95),(44,90),(45,93),(46,96),(47,91),(48,94),(49,81),(50,84),(51,87),(52,82),(53,85),(54,88),(55,83),(56,86),(57,102),(58,97),(59,100),(60,103),(61,98),(62,101),(63,104),(64,99),(73,106),(74,109),(75,112),(76,107),(77,110),(78,105),(79,108),(80,111)], [(2,6),(4,8),(9,13),(11,15),(18,22),(20,24),(25,29),(27,31),(34,38),(36,40),(42,46),(44,48),(50,54),(52,56),(58,62),(60,64),(66,70),(68,72),(74,78),(76,80),(81,85),(83,87),(89,93),(91,95),(98,102),(100,104),(106,110),(108,112)]])

55 conjugacy classes

class 1 2A2B2C2D2E2F2G4A4B4C4D4E4F4G4H4I4J7A7B7C8A8B8C8D14A14B14C14D14E14F14G14H14I28A···28F28G···28O56A···56F
order122222224444444444777888814141414141414141428···2828···2856···56
size11247714282244414142828282224428282224448884···48···88···8

55 irreducible representations

dim1111111111112222222224448
type+++++++++++++++++++++-++-
imageC1C2C2C2C2C2C2C2C2C2C2C2D4D4D4D7D14D14D14D14D14C8.C22D4×D7D4×D7D7×C8.C22
kernelD7×C8.C22D7×M4(2)C8.D14D7×SD16SD16⋊D7D7×Q16Q16⋊D7C28.C23D4.9D14C7×C8.C22C2×Q8×D7D7×C4○D4C4×D7C2×Dic7C22×D7C8.C22M4(2)SD16Q16C2×Q8C4○D4D7C4C22C1
# reps1112222111112113366332333

Matrix representation of D7×C8.C22 in GL8(𝔽113)

00100000
00010000
1120900000
0112090000
00001000
00000100
00000010
00000001
,
0011200000
0001120000
1120000000
0112000000
00001000
00000100
00000010
00000001
,
4110000000
10372000000
0041100000
00103720000
0000606010477
000044449764
0000604400
0000831091099
,
01000000
10000000
00010000
00100000
00000010
000011211211291
00001000
00000001
,
1120000000
0112000000
0011200000
0001120000
00001000
00000100
0000001120
000041410112

G:=sub<GL(8,GF(113))| [0,0,112,0,0,0,0,0,0,0,0,112,0,0,0,0,1,0,9,0,0,0,0,0,0,1,0,9,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[0,0,112,0,0,0,0,0,0,0,0,112,0,0,0,0,112,0,0,0,0,0,0,0,0,112,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[41,103,0,0,0,0,0,0,10,72,0,0,0,0,0,0,0,0,41,103,0,0,0,0,0,0,10,72,0,0,0,0,0,0,0,0,60,44,60,83,0,0,0,0,60,44,44,109,0,0,0,0,104,97,0,109,0,0,0,0,77,64,0,9],[0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,112,1,0,0,0,0,0,0,112,0,0,0,0,0,0,1,112,0,0,0,0,0,0,0,91,0,1],[112,0,0,0,0,0,0,0,0,112,0,0,0,0,0,0,0,0,112,0,0,0,0,0,0,0,0,112,0,0,0,0,0,0,0,0,1,0,0,41,0,0,0,0,0,1,0,41,0,0,0,0,0,0,112,0,0,0,0,0,0,0,0,112] >;

D7×C8.C22 in GAP, Magma, Sage, TeX

D_7\times C_8.C_2^2
% in TeX

G:=Group("D7xC8.C2^2");
// GroupNames label

G:=SmallGroup(448,1229);
// by ID

G=gap.SmallGroup(448,1229);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,184,570,185,438,235,102,18822]);
// Polycyclic

G:=Group<a,b,c,d,e|a^7=b^2=c^8=d^2=e^2=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,d*c*d=c^3,e*c*e=c^5,e*d*e=c^4*d>;
// generators/relations

׿
×
𝔽